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Abstract

Two methods for the identification of the vibration characteristics of rotating engine blades from time response

measurements are presented. The time responses are obtained from a mathematical blade tip timing simulation which is

developed using a multi-degree-of-freedom model including structural properties of the bladed disk assembly, blade

mistuning effects and aeroelastic terms. The modal parameters are identified from two subspace algorithms. The first

subspace algorithm uses the properties of the shifted observability matrix. The second subspace algorithm optimizes the

mutual information between the future data vector of observations and the innovation state vector. The results from the

methods are compared in order to determine which of the methods is more suitable in modal parameter identification of

rotating engine blades.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

This paper presents a contribution to the analysis of rotating machines. In particular, we are interested in
the modal parameter identification of rotating engine blades using non-contact measurements. Bladed
assemblies such as turbines are subjected to several sources of excitation leading to forced vibration responses
that may occur at or near a blade’s natural frequencies. Severe vibratory loads may cause cracks, blade failures
and finally the total failure of the engine. Therefore, monitoring blade vibrations is of great importance. It
prevents damage and it is possible to predict the durability and the life of blades under operating conditions.
For this purpose, most engine and industrial turbine manufacturers develop measuring techniques that use
several sensors in the casing around the rotor to measure and analyse the time of arrival of the blade tips at the
sensors. Two standard measuring methods are used to obtain blade vibrations: the first method requires the
installation of gages on some of the blades and the second method uses a frequency-modulated grid system. In
the first method the measurement of rotating blade responses is performed by means of blade-mounted strain
gauges. This is a very expensive contact process requiring slip ring systems and high-quality telemetry.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Furthermore, the blade-mounted strain gauges have a limited operating life as they are subjected to the harsh
on-engine conditions. For the second standard method, the frequency-modulated grid method (FM grid
method), permanent magnets are fitted on the tips of some blades and a specially formed wire is installed in the
compressor casing above the magnets. As a blade passes a wire, the magnet produces an alternative current
(AC) in the wire. Blade vibrations are interpreted from the voltage modulation of this AC signal. In this
method, no signal transmitter between the rotor and the stator is needed, but the wire requires a special casing
and the number of blades monitored at a time is limited to three per rotor stage. An alternative method to the
two standard measuring methods is the blade tip timing (BTT) or non-intrusive stress measurement which is
based on optical, capacitive or magnetic probe technology. The basic concept of this technique has been
developed in Refs. [1–5]. Tip timing is a non-contacting measurement technique which uses casing mounted
probes to determine the vibration of all blades. Several probes are installed in the engine casing above the
rotor, and the blade transit times between the probes are measured. Fig. 1 summarizes the basic principle of
this technique. Two sensors are placed around the blades. They measure the passage time of each blade in
front of the sensors. The angle between these two sensors is 180�. A third sensor is placed in the proximity of
the engine shaft. It measures the once-per-revolution signal. When there are no blade vibrations, the blade
transit times are a function of rotor speed, rotor radius and circumferential probe position. In the case of blade
vibrations, the blade transit times deviate from those obtained in the undisturbed condition, with the blades
passing the probes earlier or later than normal, depending on their instantaneous deflection. The typical
elements of a tip timing vibration measurement system are: the acquisition of raw arrival time data by a
number of probes mounted in the casing, the derivation of blades’ displacements from the measured data and
the analysis of the modal parameters which describe the vibration properties of rotating bladed assemblies.
Compared with the two standard methods cited previously, this technique provides notable advantages: it is
non-contacting, it senses all blades and it reduces costs because it eliminates the need for rotor instrumentation
and telemetry for signal transmission. This technique, however, has some drawbacks. One such drawbacks is
that the measurement sampling frequency is completely dependent on the rotor speed and the number of
measurement probes installed.

Methods for analysing blade tip timing data have been developed since 1970. However, given a limited
number of probes, there are still no standard approaches that can identify synchronous response resonance
frequencies with adequate precision. Let us recall that a synchronous response occurs when a blade’s vibration
frequency is an integer multiple of the engine rotation speed and an asynchronous response occurs when the
Fig. 1. A simple blade tip timing system.
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blades’ frequency response is a non-integer multiple of the assembly rotation speed. Synchronous vibration
can be caused by mechanical effects such as residual unbalance of the rotors and non-concentric casing, as well
as aerodynamic effects such as irregular pressure distributions within the airflow due to the engine intake
geometry and wakes produced by upstream stators. Asynchronous vibrations are typically caused by flutter
instabilities, rotating stall or by acoustic resonance. From an experimental point of view, the problem is that it
is impossible to know with enough accuracy which blade will produce the largest vibration amplitude. As
rotating instrumentation is limited, a challenge for the monitoring of bladed assemblies such as turbines is the
use of blade tip timing methods and the analysis of BTT data can be performed either on-line or off-line. On-
line data analysis provides near-real-time information updated at least once per second, while off-line analysis
can provide more detailed information on individual blades, inter-blade excitations and assembly mistuning
effects. The work presented in this paper concerns off-line analysis.

Carrington et al. [1] formulated three vibration analysis methods: a determinant method using four probes,
a global autoregressive method and an autoregressive method with instrumental variables. They applied these
methods to the tip timing problem using data obtained from a simple mathematical blade tip timing
simulation. The results from the methods were compared statistically in order to determine which of the
techniques is more suitable. However, all of the techniques produced biased results. In Ref. [2] Dimitriadis
et al. studied the blade mistuning, the multiple engine order excitation, the combined asynchronous and
synchronous resonances and the transient components in the performances of BTT data analysis. They used a
simple autoregressive approach and found that major problems occur in regions where two different blade
modes respond in resonance at different engine orders simultaneously.

This paper describes the use of subspace modelling for identification of blade vibration eigenfrequencies and
their damping ratios using blade tip timing data. This method is applied to a lumped parameter model which
produces synchronous responses. The mode shapes of the bladed assembly are also identified. This paper is
organized as follows: a mathematical model of the vibrating system is given in Section 2. From this model we
obtain the blade tip timing data used for the identification of modal parameters. In Section 3 we describe a
method used to find the signal vibration of each blade starting from tip timing measurements. In Section 4 a
signal reconstruction method is proposed to solve the aliasing problem. In Section 5 the discrete time state-
space model is derived with the transition matrix which contains all modal information. In Section 6 the
transition matrix is obtained by shifting properties of the observability matrix. In Section 7 the transition
matrix is obtained by optimization of the mutual information criterion between the future data vector of
observations and the innovation state vector. The effectiveness of these two methods is presented and
discussed in Section 8 where numerical results are presented. This paper is briefly concluded in Section 9.

2. Vibration analysis of the simulated model

The blade tip timing data analysis methods developed in this paper are applied to simulated time data
obtained from a mathematical model of the forced response of a rotating bladed assembly. Fig. 2 shows the
basic layout of the mechanical model. For illustrative purposes only three blades represented by a
mass–spring–damper system are shown in this figure and it is assumed that each blade in the assembly has one
significant mode which is the first bending. This system has blade degrees-of-freedom (dof) and disk (dof) for
Fig. 2. Two degrees of freedom per sector model.
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each sector. Each disk is coupled to neighbouring sectors by springs of stiffness kc. A structural damping,
whose damping ratio is x, is shown in the model. This model simulates the dynamic behaviour of a blade
assembly which has twenty two blades, and provides a temporal forced response of each blade. The main
objective of the sweeping simulator is to attempt to produce data similar to the experimental blade tip timing
data obtained from tests on fans, turbines and other bladed assemblies. Random excitations are generated to
obtain the forced responses of the system and only steady-state responses are considered for the identification
of modal parameters. This model will provide the temporal forced response of each blade. The equations of
motion for this model are

M0 €qðtÞ þ C0 _qðtÞ þ K0qðtÞ ¼ FaeroðtÞ þ FturbðtÞ (1)

where qðtÞ is the vector of displacements corresponding to ð2� 22Þ dofs. The displacement in sector j is
given by

qjðtÞ ¼
q

j
1ðtÞ

q
j
2ðtÞ

" #
(2)

the subscript 1 represents the blade and the subscript 2 represents the disk. In fact, the displacement for all
sectors is given by the global ð44� 1Þ vector

qðtÞ ¼

q1ðtÞ

..

.

q44ðtÞ

2
664

3
775. (3)

M0, C0 and K0 represent the structural mass, damping and stiffness matrices of dimension ðn0 � n0Þ with
n0 ¼ 44. The mass matrix M0 is given by

M0 ¼

Ms 0 � � � 0

0 Ms � � � 0

..

. ..
. ..

. ..
.

0 0 � � � Ms

2
66664

3
77775 with Ms ¼

ma 0

0 md

" #
(4)

where ma is a modal mass of blade j and md is a modal mass of a part of disk j.
The stiffness matrix K0 is given by

K0 ¼

Ka Kb 0 � � � Kb

Kb Ka Kb � � � 0

0 Kb Ka � � � 0

..

. ..
. ..

. ..
. ..

.

Kb 0 � � � Kb Ka

2
66666664

3
77777775

(5)

with

Ka ¼
ka �ka

�ka ka þ kd þ 2kc

" #
(6)

and

Kb ¼
0 0

0 �kc

" #
. (7)

The damping matrix is given by

C0 ¼ P�TDiagð4pf ixiÞP
�1 (8)
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where f i is the ith natural frequency, xi is the ith damping ratio and P is the matrix containing the conservative
mode shapes. An aeroelastic force FaeroðtÞ has been introduced into the model, by way of circulant matrix
coefficients, considering only five different coefficients (see Ref. [6] and Appendix A). This force is a function
of displacement qðtÞ and velocity _qðtÞ:

FaeroðtÞ ¼ CR
aero _qðtÞ � oCI

aeroqðtÞ (9)

where CR
aero and CI

aero are two ð44� 44Þ matrices containing the aeroelastic coefficients, C0, C1, C�1, C2 and
C�2, which have been computed with a software developed by our research group (EDF R& D). These two
matrices are given in Appendix A. The angular excitation frequency is given by o. A white noise excitation
simulates the turbulence excitation FturbðtÞ and generates the time-forced response. It is representative of
turbulent excitation of the blades by the fluid. Eq. (1) becomes

M0 €qðtÞ þ Cdamp _qðtÞ þ KstiffqðtÞ ¼ FturbðtÞ (10)

where Kstiff and Cdamp are given by the following formula (see Appendix A):

Kstiff ¼ K0 þ oCI
aero (11)

and

Cdamp ¼ C0 � CR
aero. (12)

The stiffness coefficients have been chosen so that the blade modes are well separated from the disk modes: the
blade mode family has frequencies around 60Hz and the lowest frequency for a disk mode is close to 500Hz.
Turbo machinery blade rows are designed to contain identical blades, identically mounted, and uniformly
spaced on the disk within a given blade row. When this is satisfied, the blade row is called tuned. However,
minor differences in structural and material properties and in blade attachments are inherently present among
the blades. These variations arise because of manufacturing tolerances, variations in material properties, small
imperfections, wear and tear and other similar factors. Bladed disks are only quasi-cyclic structures. As a
consequence, the dynamic behaviour of actual bladed disks may be drastically modified in comparison with
their cyclic idealization. The variations in blade properties and the flow field from one blade to another are
referred to as mistuning. In the case of mistuned blades the vibration energy of the system is concentrated in a
few blades, and these blades have important amplitudes. A higher response amplitude implies a higher level of
stress in the blade and so the stresses in a mistuned blade row will be higher than the stresses present in a tuned
blade row. A significant risk of fatigue failure will exist because of the presence of mistuning. Hence, it is
essential to understand the effects of mistuning on the designed bladed disk. Mistuning is modelled by adding
stiffness variations to nominal blade stiffness. Mistuning is defined by the presence of small blade-to-blade
variations of their structural and (or) geometrical properties, which may produce large increases in the forced
response of some of the blades. The ith mistuned stiffness is expressed as

ka;i ¼ kað1þ diÞ with i ¼ 1; 2; . . . ; 22 (13)

where di is the ith mistuning value which is given randomly or intentionally. It is assumed that each blade in
the assembly has one significant mode: the first bending mode. The eigenvalues of the transition matrix of the
vibrating system contain the eigenfrequencies and the damping coefficients of the tuned and mistuned model
and are presented in Fig. 3. We can see that the tuned system is unstable and that the mistuned model system is
stable. Mistuning couples all the tuned modes and stabilizes the unstable modes. These computed
eigensolutions are called exact solutions and our objective is to compare these exact modal parameters to
identified modal parameters obtained by subspace algorithms developed in the paper. Fig. 4 presents tuned
and mistuned mode shapes. It is shown from these figures that the mode shapes of bladed assemblies are
influenced by the mistuning. The mistuned mode shapes present a localization of the vibration energy on
certain blades and this phenomenon has a dangerous consequence for the structure behaviour.
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3. Analysis of tip timing measurements

Tip timing methods are used to measure bladed assembly vibrations. The BTT method relies on a number of
probes placed around the casing of the engine and detecting each blade tip as it passes in front of the probes.
The time of arrival of the blades at each probe is compared to the times at which the blades would have arrived
without vibration. The difference between the two times yields the displacements of the blade tips when
passing the relevant probe at each revolution. The analysis of the difference in time allows us to find the
vibratory displacement of each blade. The measured time is given by the following formula:

tk ¼ t0 þ dt (14)

where tk is the time of arrival of the blade k, t0 is the time of arrival once per revolution and dt is the variations
of time of arrival.

From dt we find the vibratory displacement of the blade k at time tk using the following relation:

dðtkÞ ¼ �ROrdtðtkÞ (15)

where R is the external ray of the bladed assemblies and Or is the assembly rotational speed.
The response signal for each blade in the assembly can be analysed individually using standard Fourier

transform; however, from the sampling theory, the frequency components of the assembly response are
defined up to the frequency, omax, given by the following relation:

omax ¼
OrM

2
(16)

where M is the number of response measurement points around the periphery (or the number of probes). Only
response components with a frequency less than half the rotation rate are defined uniquely. All other
frequency components are present as artefacts in the measured signal. This type of signal distorsion is called
aliasing. The probe measurements are discrete pulses that occur once per revolution and from the under-
sampling of BTT signals we reconstruct a continuous signal of displacements.

4. Reconstruction of the signal

The subspace method requires signals without aliasing and a regular sampling of these signals to identify
modal parameters, whereas the tip timing method gives signals with aliasing and under-sampling signals.
Under-sampling of BTT signals cannot be taken into account in the subspace method. To solve this problem
and find a link between the subspace method and tip timing data, an interpolation technique is proposed in
this paragraph. In fact, under-sampled signals are used to reconstruct a continuous signal using the Shannon
sampling theorem. This theorem is given by the following expression [7]:

sðtÞ ¼
Xþ1

k¼�1

sAC
k

ns

� �
sinðnst� kÞ

ðnst� kÞ
(17)

where k is the number of samples and sAC is the complex signal of the real signal sa (signal with aliasing) given
by the tip timing analysis method. The Hilbert transform is used to compute sAC from sa.

Let sAR be the interpolated signal of bandwidth B and centre frequency f 0. Its expression is given by the
following relation:

sARðtÞ ¼ ReðsðtÞ expði2pf 0tÞÞ. (18)

An analytic band-pass signal with bandwidth B and centre frequency f 0 can be perfectly reconstructed from
samples of the corresponding complex envelope at a sub-sampling rate ns4B. Hence, the sampling rate ns can
be much smaller than twice the highest frequency ðf 0 þ B=2Þ. The following formula describes the
reconstruction of this signal:

sARðtÞ ¼ Re
Xþ1

k¼�1

sAC
k

ns

� �
sinðnst� kÞ

ðnst� kÞ
expði2pðf 0=nsÞðnst� kÞÞ

" #
. (19)
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Using this formula, the original high-frequency signals sAR can be reconstructed at an arbitrary time sample,
which is important for many applications, such as tip timing measurements. However, formulas of this type
are known to be impractical, since the sinðxÞ=x function decays very slowly, so that many terms of the series
have to be evaluated for accurate reconstruction. A well-known approach to avoid this problem in the
complex envelope or low-pass case is to use reconstruction kernels K that are time limited so that only a finite
number of samples have to be considered. The general reconstruction formula given by Ries [7], for sAR

sampled at rate ns, is

Kns
sARðtÞ ¼ Re

Xþ1
k¼�1

sAC
k

ns

� �
Kðnst� kÞ expði2pðf 0=nsÞðnst� kÞÞ

" #
(20)

where K is a piecewise continuous function. The optimum kernel for an arbitrary order p is given in the time
domain by

KoptimumðtÞ ¼
X½ðp�lÞ=2�

l¼0

ð�1ÞlblpD2lBpðtÞ (21)

where Bp is the B-spline function of order p. It is a piecewise polynomial of degree p� 1 with finite support in
½�p=2; p=2�, defined recursively by

BpðtÞ ¼
1

ðp� 1Þ!

X½p=2�t�

k¼0

ð�1Þk
p

k

� �
p

2
� jtj � k

� �ðp�1Þ
(22)

t 2 ½�p=2; p=2�

and

BpðtÞ ¼ ðBp�1 � B1ÞðtÞ (23)
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is the p-fold convolution of the rect-function, which is equal to B1, with itself. The number blp is
defined by

t=2

sinðt=2Þ

� �p

¼
X1
l¼0

blpt2l . (24)

Fig. 5 presents the results obtained using the reconstruction formula (20). In this figure the reconstructed
signal (obtained from the signal with aliasing) is compared to the original signal (the same signal computed
without aliasing). Reconstruction error is given by the 2-norm difference between the reconstructed and the
original signal. For p ¼ 1 the error of reconstruction is equal to 6 � 10�3.

5. The discrete state-space representation

Let m be the number of analysed blades ðrpmÞ. To Eq. (10) the ðm� 1Þ observation equation is added

yðtÞ ¼ LqðtÞ þ vðtÞ (25)

where L is the ðm� n0Þ output influence matrix for the displacement, describing the relationship between the
vector qðtÞ and the measurement vector yðtÞ and vðtÞ is an ðm� 1Þ additive noise disturbance, a vector of
measurement errors simulated by a gaussian white noise. The modal characteristics (m , Wm) of the vibrating
system are solutions of

detðM0m2 þ Cdampmþ Kstiff Þ ¼ 0 (26)

and

ðM0m2 þ Cdampmþ Kstiff ÞWm ¼ 0 (27)

where detð:Þ represents a determinant. The system described by Eqs. (10) and (25) is equivalent to the following
continuous time state-space model [8–10]:

_xðtÞ ¼ ~AxðtÞ þ ~BgðtÞ (28)

yðtÞ ¼ CxðtÞ þ vðtÞ (29)

where xðtÞ is the state vector of dimension n ¼ 2n0

xðtÞ ¼
qðtÞ

_qðtÞ

" #
. (30)

~A is an n by n state matrix, ~B is an n by n0 matrix containing the bloc matrix M�10 and C is an m by n output
influence matrix including displacement only:

~A ¼
0 I

�M�10 Kstiff �M
�1
0 Cdamp

" #
(31)

and

~B ¼
0

M�10

" #
; C ¼ ½L 0�. (32)

Eqs. (28) and (29) constitute a continuous time state-space model of the dynamical system and the order of the
system is the dimension of the state matrix. Given the initial condition xðt0Þ at some t ¼ t0 and solving for xðtÞ
from Eq. (28) yields

xðtÞ ¼ e
~Aðt�t0Þxðt0Þ þ

Z t

t0

e
~Aðt�tÞ ~BFturbðtÞdt. (33)

This equation describes the variation with time of the state variable xðtÞ with respect to the initial condition
xðt0Þ and the input FturbðtÞ. The evaluation of xðtÞ at equally spaced intervals of time t can be obtained by a
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discrete time representation of Eq. (33). Let the equally spaced times be given by 0;Dt; 2Dt; . . . ; ðk þ 1ÞDt; . . .
where Dt is a constant sampling period. Consider t ¼ ðk þ 1ÞDt and t0 ¼ kDt; Eq. (33) becomes

x½ðk þ 1ÞDðtÞ� ¼ e
~ADtxðkDtÞ þ

Z ðkþ1ÞDt

kDt

e
~A½ðkþ1ÞDt�t� ~BFturbðtÞdt. (34)

The ðn� nÞ discrete time state-space matrix or discrete time transition matrix is defined by the following
relation:

A ¼ e
~ADt (35)

xkþ1 ¼ x½ðk þ 1ÞDt� is the discrete time state vector and uk ¼
R ðkþ1ÞDt

kDt
e
~A½ðkþ1ÞDt�t� ~BFturbðtÞdt is the global input

vector.
The discrete time state-space model is given by the following formula:

xkþ1 ¼ Axk þ uk (36)

and the discrete time observation equation or output observation vector is given by the following expression:

yk ¼ Cxk þ vk. (37)

The time responses of 22 blades are used in the identification process and the two previous discrete equations
form the basis of the system identification procedure. Fig. 6 shows a part of the time response of a blade used
in the identification process.
6. Identification of modal parameters by shifting the observability matrix

The eigenvalues li and eigenvectors Fli
of the discrete time transition matrix A are related to the modal

characteristics [8–10] by

li ¼ emiDt and CFli
¼ LCli

. (38)
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The global modal parameters: the natural frequencies f i and damping ratios xi of the vibrating system can be
determined by (demonstration is given in Appendix B)

f i ¼
1

2pDt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½lnðlil

�
i Þ�

2 þ 4 arcos
li þ l�i
2
ffiffiffiffiffiffiffiffiffi
lil
�
i

p
 !" #2vuut (39)

xi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½lnðlil

�
i Þ�

2

½lnðlil
�
i Þ�

2 þ 4 arcos
li þ l�i
2
ffiffiffiffiffiffiffiffiffi
lil
�
i

p
 !" #2

vuuuuut
(40)

for i ¼ 1; 2; . . . ; n0.
Our objective is to obtain the discrete time transition matrix Aðn� nÞ from the output observation vector

ykðm� 1Þ.

Define yþk ¼ ½y
T
k ; y

T
kþ1; . . . ; y

T
kþf�1�

T the ðmf � 1Þ future data vector and y�k�1 ¼ ½y
T
k�1; y

T
k�2; . . . ; y

T
k�p�

T the

ðmp� 1Þ past data vectors, where the superscript ð:ÞT denotes the transpose operation. The ðmf �mpÞ

covariance matrix between the future and the past is [11]

H ¼ E½yþk ðy
�
k�1Þ

T
� ¼

R1 R2 . . . Rp

R2 R3 . . . Rpþ1

..

. ..
. ..

. ..
.

Rf Rfþ1 . . . Rfþp�1

2
666664

3
777775 (41)

where E denotes the expectation operator and H is the block Hankel matrix (a block band counter diagonal

matrix) formed with the ðm�mÞ individual auto covariance matrices Ri ¼ E½ykþiy
T
k � ¼ CAi�1G, with

G ¼ E½xkþ1y
T
k �. The auto covariance matrices are estimated from T data points and computed by

R̂i ¼
1

T

XT
k¼1

ykþiy
T
k ; i ¼ 1; 2; . . . ; pþ f (42)

and with these auto covariance matrices we form the block Hankel matrix. In order to identify the transition
matrix A and the output influence matrix C two matrix factorizations ofH are employed: the QR factorization
and the factorization of H into its observability and controllability matrices. The first factorization uses the
orthogonal-triangular (QR) decomposition of H as H ¼ QR, where Q is a unitary matrix and R an upper
triangular matrix [12]. The second factorization of the block Hankel matrix H considers its ðmf � nÞ

observability and ðn�mpÞ controllability matrices, O and K, as

H ¼

CG CAG � � � CAp�1G

CAG CA2G � � � CApG

..

. ..
. ..

. ..
.

CAf�1G CAf G � � � CAfþp�2G

2
66664

3
77775 ¼

C

CA

..

.

CAf�1

2
66664

3
77775½G AG � � � Ap�1G� ¼ OK. (43)

The two factorizations of the block Hankel matrix are equated to give

H ¼ QR ¼ OK. (44)

From this equation the observability matrix O is computed. To identify the transition matrix A we consider
the following property which is deduced from the structure of the observability matrix O.
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Let O# be the mðf � 1Þ � n matrix obtained from O by deleting the last block row of O and let O" be the
mðf � 1Þ � n matrix obtained from O by deleting the first block row of O

O# ¼

C

CA

..

.

CAf�2

2
66664

3
77775 and O" ¼

CA

CA2

..

.

CAf�1

2
66664

3
77775. (45)

We obtain

O#A ¼ O". (46)

The least squares estimate of A is then

A ¼ ðO#ÞþO". (47)

The superscript þ indicates a pseudo-inverse. The value of the matrix C is given by the first block row of the
observability matrix O

C ¼ O1R ¼ the first block row of O. (48)

Another method using an innovation representation and optimizing the mutual information between the past
and future observations is presented in the next section.

7. Identification of modal parameters using an innovation representation and the mutual information criterion

Since the state vector xk of dimension n ¼ 2n0 is not observable (only the vector of observations yk is
measured) we estimate it and transform Eqs. (28) and (29) into a state-space innovation form, before the
discrete time transition matrix A and the output influence matrix C are computed. xk is estimated by its
orthogonal projection onto the subspace spanned by the stacked vector of past data vectors denoted y�k�1 and
the notation zk ¼ xkjy

�
k�1 is used to denote this orthogonal projection. Note that if a and b are two zero-mean

random vectors, the orthogonal projection of a onto the manifold spanned by b is by definition

ajb ¼ E½abT
�ðE½bbT

�Þ
�1b. (49)

To obtain zkþ1 advance the time index by 1 in zk and use properties of the orthogonal projection defined in
Ref. [11]

zkþ1 ¼ xkþ1jy
�
k ¼ xkþ1jy

�
k�1 þ xkþ1jek ¼ Aðxkjy

�
k�1Þ þ Bek ¼ Azk þ Bek, (50)

where ek ¼ yk � yk is called the innovation component in the data vector yk. It is an ðm� 1Þ stochastic vector
with zero mean and covariance matrix Q ¼ E½eke

T
k �. Note that ek is uncorrelated to y�k�1 and hence to zk by

construction, and that the elements of ek are serially uncorrelated. zk is an ðn� 1Þ vector of unobservable
states that are minimal sufficient statistics (optimal carriers of information) for the history of the process yk.
The ðn�mÞ matrix B is called the Kalman gain [8,11]. Since

xkþ1 ¼ E½xkþ1je
T
k �ðE½eke

T
k �Þ
�1ek (51)

the following relation is obtained:

B ¼ E½xkþ1e
T
k �ðE½eke

T
k �Þ
�1. (52)

Note that by assumption ukjy
�
k�1 ¼ 0 and vkjy

�
k�1 ¼ 0. Using the definition of ek and Eq. (37), the discrete time

observation equation which contains the innovation vector is obtained

yk ¼ ðCxk þ vkÞjy
�
k�1 þ ek ¼ Cðxkjy

�
k�1Þ þ ek ¼ Czk þ ek. (53)

The set of Eqs. (36) and (37) is now replaced by

zkþ1 ¼ Azk þ Bek (54)
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yk ¼ Czk þ ek. (55)

Such a representation is called an innovation representation of the data-generating process (36) and (37). The
aim of the mutual information method consists in the optimization of the mutual information between future
observations yþk and the state zk which is expressed as a linear transformation of the past: zk ¼ Sy�k�1 [11]. Let
Iðyþk , zkÞ be the mutual information between yþk and zk defined as follows:

Iðyþk ; zkÞ ¼ Pðyþk Þ þPðzkÞ �Pðyþk =zkÞ (56)

wherePðyþk Þ is the entropy of y
þ
k ,PðzkÞ the entropy of zk andPðyþk =zkÞ the conditional entropy. The following

maximization problem is defined:

Max Iðyþk ; zkÞ

zk:

(
(57)

Since zk ¼ Sy�k�1, the problem is to find the ðn�mpÞ matrix S which maximizes Iðyþk , Sy
�
k�1Þ. Using the

properties of gaussian vectors (yþk and y�k�1 are gaussian) the following relation is obtained:

Pðyþk Þ ¼ lnðdetðRþÞÞ PðSy�k�1Þ ¼ lnðdetðSR�S
TÞÞ (58)

Pðyþk =S
�
kþ1Þ ¼ ln det

Rþ HST

SHT SR�S
T

" # ! !
(59)

where Rþ ¼ E½yþk ðy
þ
k Þ

T
� and R� ¼ E½y�k�1ðy

�
k�1Þ

T
�.

Using the fact that

det
Rþ HST

SHT SR�S
T

" #
¼ detðSR�S

TÞ � detðRþ �HSTðSR�S
TÞ
�1SHTÞ (60)

the following formula is obtained:

Pðyþk =Sy
�
k Þ ¼ lnðdetðSR�S

TÞÞ þ lnðdetðRþ �HSTðSR�S
TÞ
�1SHTÞÞ. (61)

The estimation of S amounts to minimizing the following criterion:

Min detðRþ �HSTðSR�S
TÞ
�1SHTÞ

Sðn�mpÞ:

(
(62)

The estimate of S is obtained from

Min detðImf � R
�1=2
þ �HSTðSR�S

TÞ
�1SHTR

�1=2
þ Þ

Sðn�mpÞ

(
(63)

Min
Qn

i¼1ð1� miÞ

Sðn�mpÞ

(
(64)

where mi are the non-zero eigenvalues of X ¼ R
�1=2
þ HSTðSR� STÞ

�1SHTR
�1=2
þ . Change the variable as S ¼

ZETR�1=2� where Z is an ðn� nÞ matrix of full rank and E is an ðmp� nÞ orthogonal matrix to determine. The
matrix X is then given by

X ¼ R
�1=2
þ HR�1=2� EETR�1=2� HTR

�1=2
þ . (65)

The eigenvalues of X are

lðXÞ ¼ lðR�1=2þ HR�1=2� EETR�1=2� HTR
�1=2
þ Þ. (66)

Since lðabÞ ¼ lðbaÞ, the eigenvalue of X are given by l½ETðR
�1=2
þ HR�1=2� Þ

T
ðR
�1=2
þ HR�1=2� ÞE� and are bounded

by the n largest eigenvalues of ðR
�1=2
þ HR�1=2� Þ

T
ðR
�1=2
þ HR�1=2� Þ.
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The bound is attained if E is taken as the eigenvector corresponding to the n largest eigenvalues of
ðR
�1=2
þ HR�1=2� Þ

T
ðR
�1=2
þ HR�1=2� Þ. Introduce the singular value decomposition of R

�1=2
þ HR�1=2�

R
�1=2
þ HR�1=2� ¼ URVT ¼ ½Un U0�

Rn 0

0 R0

" #
VT

n

VT
0

" #
(67)

where Un and Vn are ðmf � nÞ and ðmp� nÞ matrices containing the first n left and right singular vectors. They

verify UT
nUn ¼ In and VT

nVn ¼ In and Sn is the ðn� nÞ diagonal matrix containing the first n singular values.

The eigenvalue decomposition of ðR
�1=2
þ HR�1=2� Þ

T
ðR
�1=2
þ HR�1=2� Þ is then given by VR2VT and the upper

bound on the eigenvalues of X is attained if E ¼ Vn. The solution of our minimization problem (64) is given by
S ¼ ZVT

nR
�1=2
� and the state zk takes the form

zk ¼ ZVT
nR
�1=2
� y�k�1. (68)

To estimate the parameters of the state-space model the definition of orthogonal projection of random
variables is used. To obtain a relation for A, we observe that

zkþ1jzk ¼ E½zkþ1z
T
k �ðE½zkz

T
k �Þ
�1
¼ Azk. (69)

Then

A ¼ E½zkþ1z
T
k �ðE½zkz

T
k �Þ
�1
¼ SE½y�k�1ðy

�
k�1Þ

T
�STðSE½y�k�1ðy

�
k�1Þ

T
�STÞ

�1. (70)

It is useful to define the block ðmp�mpÞ covariance matrix R� ¼ E½y�k�1ðy
�
k�1Þ

T
� and its left-shifted variant

R � ¼ E½y�k ðy
�
k�1Þ

T
� to obtain

A ¼ SR � STðSR�S
TÞ
�1
¼ ðZTVT

nR
�1=2
� R � R�1=2� VnZÞðZ

TZÞ�1. (71)

To obtain a relation for C, the orthogonal projection between the data yk and the states zk is considered

ykjzk ¼ E½ykz
T
k �ðE½zkz

T
k �Þ
�1zk ¼ Czk (72)

C ¼ E½ykz
T
k �ðE½zkz

T
k �Þ
�1
¼ E½ykðy

�
k�1Þ

T
�STðSE½y�k�1ðy

�
k�1Þ

T
�STÞ

�1 (73)

C ¼ ½R1 R2 � � � Rp�S
TðSR�S

TÞ
�1
¼ ½R1 R2 � � � Rp�R

�1=2
� VnZðZ

TZÞ�1. (74)

In the paper we consider Z ¼ In. Knowing the transition matrix A and the output influence matrix C, it is
possible to identify the eigenfrequencies, damping ratios and mode shapes of mistuned bladed disks from
Fig. 7. Methodology used in this paper.
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reconstructed tip timing signals. The comparison of the shifted observability matrix method and the mutual
information criterion method in modal parameter identification is presented in the next section. Fig. 7
summarizes the identification procedure used in the paper.

8. Analysis of identification results

The subspace modal identification algorithms developed have been applied to time responses of 28min and
24 s, generated from the mechanical model presented previously. The sampling period is Dt ¼ 7 � 10�3 s. Two
approaches can be used in the identification process: a local and a global approach. The local approach uses
the temporal response of each blade alone. The global approach uses all temporal blade responses. In this
paper a global approach is used; this approach allows the mode shape identification of bladed assemblies. The
stability diagram involves tracking the estimates of eigenfrequencies and damping ratios as a function of
model order. As the model order is increased, more and more modal frequencies and damping ratios are
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Fig. 8. Stability diagram on eigenfrequencies using the shifted observability matrix method.
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Fig. 9. Stability diagram on eigenfrequencies using the mutual information criterion method.
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estimated; hopefully, the estimates of the physical modal parameters stabilize as the correct model order is
reached. For modes which are very active in the measured data, the modal parameters stabilize at a very low
model order. For modes poorly excited, the modal parameters may not stabilize until a very high model order
is chosen. Nevertheless, the non-physical modes, essentially computational modes, do not stabilize at all
during this process and can be sorted out of the modal parameters. Figs. 8 and 9 show the stability diagrams
on eigenfrequencies using the shifted observability matrix method and the mutual information criterion
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Fig. 10. Comparison of mode shapes using the MAC with the observability matrix method.
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Table 1

Comparison between exact and identified results (shifted observability method)

Comparison between exact and identified results

Identified results Exact results Error on

frequency (%)

Error on damping

ratio (%)

Frequency

(Hz)

Damping

ratio (%)

Frequency

(Hz)

Damping

ratio (%)

Mode no. 1 59.11 0.096 59.11 0.095 0.00 1.05

Mode no. 2 59.37 0.137 59.37 0.138 0.00 0.72

Mode no. 3 59.69 0.169 59.69 0.168 0.00 0.6

Mode no. 4 59.73 0.175 59.73 0.159 0.00 10.1

Mode no. 5 59.74 0.270 59.74 0.296 0.00 8.8

Mode no. 6 59.81 0.199 59.77 0.248 0.07 60

Mode no. 7 59.84 0.100 59.81 0.092 0.05 116

Mode no. 8 59.88 0.352 59.83 0.272 0.08 29

Mode no. 9 59.89 0.367 59.86 0.172 0.05 113

Mode no. 10 59.94 0.174 59.93 0.162 0.02 7.4

Mode no. 11 59.96 0.262 59.96 0.269 0.00 2.6

Mode no. 12 59.98 0.242 59.97 0.221 0.02 9.5

Mode no. 13 59.99 0.184 59.99 0.181 0.00 1.66

Mode no. 14 60.01 0.137 60.00 0.127 0.02 7.87

Mode no. 15 60.09 0.320 60.10 0.294 0.02 8.8

Mode no. 16 60.13 0.174 60.13 0.156 0.00 11.5

Mode no. 17 60.19 0.233 60.18 0.251 0.02 7.2

Mode no. 18 60.19 0.222 60.19 0.212 0.00 4.7

Mode no. 19 60.21 0.222 60.20 0.209 0.02 6.2

Mode no. 20 60.28 0.198 60.28 0.211 0.00 6.2

Mode no. 21 60.36 0.231 60.36 0.228 0.00 1.32

Mode no. 22 60.76 0.227 60.77 0.207 0.02 9.7

B. Salhi et al. / Journal of Sound and Vibration 314 (2008) 885–906 901
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method. From these plots we can identify easily the eigenfrequencies of 22 blades. We can see that all
eigenfrequencies are stable.

The exact mode shapes can be compared with the identified mode shapes using the modal assurance
criterion (MAC): let Ui be the ith exact mode shape and ~Uj the jth identified mode shape; the MAC matrix is
defined as

MACij ¼
jU�i ~Ujjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU�i UiÞð ~U

�

j
~UjÞ

q (75)

where ð:Þ� is the complex conjugate transpose.
The MAC indicates the degree of correlation between the mode shapes. For two vectors that are

proportional the MAC equals 1 (perfect correlation) and values above 0.8 are highly correlated. Values below
0.6 should be considered with much caution: the correlation is not well defined. Fig. 10 shows the values of the
MAC matrix for the 22 blades, using the shifted observability matrix method. From this figure we can see that
eight modes, 6, 7, 9, 10, 13, 15, 17 and 18, have not been found by the identification process using the shifted
observability matrix method. The values of the MAC are lower than 0.6 for these eight modes. For the
remaining modes the correlation between exact and identified modes is acceptable or even excellent. Fig. 11
shows the values of the MAC matrix using the mutual information criterion method. From this figure we
observe that only one mode, the mode number 13, is not identified by this method. Fig. 12 shows a comparison
between some exact and identified mode shapes. The identified mode shapes can be compared to the exact ones
in the following manner: for each complex mode U, we define a real mode UR as the deflection for the instant
of time where the maximum amplitude is obtained. Four of these modes are shown in Fig. 12. These results are
obtained using the mutual information criterion method.
Table 2

Comparison between exact and identified results (mutual information method)

Comparison between exact and identified results

Identified results Exact results Error on

frequency (%)

Error on damping

ratio (%)

Frequency

(Hz)

Damping

ratio (%)

Frequency

(Hz)

Damping

ratio (%)

Mode no. 1 59.11 0.098 59.11 0.095 0.00 3.16

Mode no. 2 59.37 0.141 59.38 0.137 0.02 2.92

Mode no. 3 59.69 0.160 59.70 0.168 0.02 4.76

Mode no. 4 59.73 0.158 59.73 0.159 0.00 0.63

Mode no. 5 59.76 0.289 59.75 0.295 0.02 2

Mode no. 6 59.78 0.258 59.78 0.248 0.00 4

Mode no. 7 59.81 0.097 59.81 0.093 0.00 4.3

Mode no. 8 59.82 0.330 59.83 0.272 0.02 21

Mode no. 9 59.85 0.159 59.86 0.172 0.02 7.56

Mode no. 10 59.94 0.167 59.93 0.161 0.02 3.73

Mode no. 11 59.97 0.237 59.96 0.269 0.02 12

Mode no. 12 59.98 0.272 59.97 0.221 0.02 23

Mode no. 13 59.99 0.187 59.99 0.181 0.00 3.31

Mode no. 14 60.01 0.134 60.01 0.127 0.00 5.51

Mode no. 15 60.08 0.282 60.10 0.294 0.03 4.1

Mode no. 16 60.13 0.159 60.13 0.156 0.00 1.92

Mode no. 17 60.18 0.247 60.18 0.251 0.00 1.59

Mode no. 18 60.19 0.212 60.19 0.212 0.00 0.00

Mode no. 19 60.21 0.223 60.20 0.209 0.02 6.70

Mode no. 20 60.28 0.194 60.28 0.211 0.00 8.1

Mode no. 21 60.36 0.231 60.36 0.228 0.00 1.32

Mode no. 22 60.76 0.235 60.77 0.207 0.02 14
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Table 1 shows the exact and identified values on eigenfrequencies and damping ratios using the shifted
observability matrix method. The relative errors between the exact and the identified eigenfrequencies are
lower than 0.08% and the relative errors on damping ratios are higher than 10% for six modes, the maximal
value being 116% for the seventh mode. Table 2 shows the exact and identified values on eigenfrequencies and
damping ratios using the mutual information criterion method. The relative errors between the exact and the
identified eigenfrequencies are lower than 0.02% and the relative errors on damping ratios are higher than
10% for four modes, the maximal value being 23% for the twelfth mode.

The discrete-time data sequence fykg possesses a discrete-time Fourier transform and from this transform we
find the frequency component of this signal, plotting the power spectral density which is a measurement of the
energy at various frequencies. The peaks of resonance of a blade appear when we plot the power spectral
density. However, often spurious or artefact peaks appear in these plots and it is very difficult to differentiate
spurious frequencies and true eigenfrequencies of blades. This technique is called the standard FFT method.
Fig. 13 shows the error in percent between the exact and the identified eigenfrequencies using the standard
FFT method and the mutual information criterion method proposed in the paper. We have applied the FFT
and the subspace algorithm to each blade alone: a local approach has been used in this example. From this
figure we can conclude that the subspace method works better than the traditional FFT method. We also note
that the global approach gives better results than the local approach. There are at least two reasons for the use
of the subspace method instead of the traditional FFT method:
�
 the subspace method gives a smaller error on identified eigenfrequencies than the FFT method as shown in
Fig. 13;

�
 if we use the FFT method we cannot obtain the damping coefficients of blades. Using the subspace method

and in particular the mutual information criterion, the damping coefficients can be identified.

9. Conclusion

The determination of the vibration characteristics of rotating engine blades is very important for fatigue
failure considerations. One of the most promising techniques for measuring the modal parameters of blade



ARTICLE IN PRESS
B. Salhi et al. / Journal of Sound and Vibration 314 (2008) 885–906904
vibrations is blade tip timing. Tip timing data are generated using mistuned models which are obtained by
adding stiffness variations to nominal blade stiffness. Two identification procedures based on subspace
methods are compared using data obtained from a reconstruction signal. The first subspace method uses
properties of the observability matrix to obtain the transition matrix which contains all modal information
about the vibrating system. The second method uses the mutual information between the future data vector of
observations and the state vector. The transition matrix is computed again. These two methods are a real
improvement to the traditional FFT method. Using subspace methods, and in particular the mutual
information criterion, the damping ratios and the mode shapes can be identified with reasonable error. Note
that the two subspace methods give good results in the identification of closely spaced eigenfrequencies. In the
future we shall study the effect of signal to noise ratio on the identification of modal parameters. The
reconstruction of temporal signals from identified modal parameters and the identification of aeroelastic
coupling and aerodynamic excitation are also under investigation.
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Appendix A

The form of the aeroelastic matrix is

Caero ¼

C0 0 C1 0 C2 0 � � � � � � 0 C�2 0 C�1

0 0 � � � 0

C�1 0 C0 0 C1 0 C2 0 0 � � � 0 C�2

0 0 � � � 0

C�2 0 C�1 0 C0 0 C1 0 C2 0 � � � 0

0 0 � � � 0

0 0 C�2 0 C�1 0 C0 0 C1 0 C2 �

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

C2 0 � � � 0 C�2 0 C�1 0 C0 0 C1

0 0 � � � 0

C1 0 C2 0 0 � � � 0 C�2 0 C�1 0 C0

2
66666666666666666666664

3
77777777777777777777775

. (76)

The value 0 between the aeroelastic coefficients represents the excitation on the dof corresponding to the disk.
The coefficients Ck are given by the following relation:

Ck ¼ jCkje
jðFkþotÞ

and FaeroðtÞ can be written as

FaeroðtÞ ¼ jCkje
jðFkþotÞ _Q

where _Q is the real part of the velocity amplitude, and jCkj and Fk are the amplitude and phase of the
aeroelastic coefficients. These two values are given by our industrial partner using a finite element model.

We then obtain

FaeroðtÞ ¼ jCkjð_qðtÞ cosðfkÞ � oqðtÞ sinðFkÞÞ ¼ CR
aero _qðtÞ � oCI

aeroqðtÞ.

The two matrices CI
aero and CR

aero have the same form as Caero and are given by the following relations:

CI
aero ¼ jCkj sinðFkÞ
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and

CR
aero ¼ jCkj cosðFkÞ.

Appendix B

The eigenvalues li of the transition matrix A are:

li ¼ emiDt

where i ¼ 1; 2; . . . ; n. This relation is rewritten in the following way:

li ¼ e�xioiþjoi

ffiffiffiffiffiffiffiffiffiffi
ð1�x2i Þ
p

Dt

l�i ¼ e�xioi�joi

ffiffiffiffiffiffiffiffiffiffi
ð1�x2i Þ
p

Dt

li þ l�i ¼ 2e�xioiDt cosðoi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2i Þ

q
DtÞ

lil
�
i ¼ e�2xioiDt

oi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2i Þ

q
¼

1

Dt
arcos

li þ l�i
2
ffiffiffiffiffiffiffiffiffi
lil
�
i

p
 !

ln lil
�
i ¼ �2xioiDt

o2
i ¼

1

ð1� x2i ÞDt2
arcos

li þ l�i
2
ffiffiffiffiffiffiffiffiffi
lil
�
i

p
 !" #2

and

x2i o
2
i ¼
½lnðlil

�
i Þ�

2

4Dt2

1� x2i
x2i
¼

1

x2i
� 1 ¼

4

½lnðlil
�
i Þ�

2
arcos

li þ l�i
2
ffiffiffiffiffiffiffiffiffi
lil
�
i

p
 !" #2

.

We then obtain the damping coefficients and the eigenfrequencies using

xi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½lnðlil

�
i Þ�

2

½lnðlil
�
i Þ�

2 þ 4 arcos
li þ l�i
2
ffiffiffiffiffiffiffiffiffi
lil
�
i

p
 !" #2

vuuuuut

f i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2pDt
½lnðlil

�
i Þ�

2 þ 4 arcos
li þ l�i
2
ffiffiffiffiffiffiffiffiffi
lil
�
i

p
 !" #28<

:
9=
;

vuuut .
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